Types of excavation
Contents |
[edit] What is excavation?
Excavation is the process of removing earth to form a cavity in the ground.
On small sites or in confined spaces, excavation may still be carried out by manual means using tools such as picks, shovels and wheelbarrows. Larger scale excavation works will require heavy plant such as bulldozers and backactors. For more information, see Excavating plant.
[edit] What sort of material is excavated?
A common method of classifying excavation is by the type of material being excavated:
[edit] Topsoil excavation
This involves the removal of the exposed layer of the earth’s surface, including any vegetation or decaying matter which could make the soil compressible and therefore unsuitable for bearing structural loads. The depth will vary from site to site, but is usually in a range of 150-300 mm.
[edit] Earth excavation
This involves the removal of the layer of soil directly beneath the topsoil. The removed material (referred to as 'spoil') is often stockpiled and used to construct embankments and foundations.
[edit] Rock excavation
This is the removal of material that cannot be excavated without using special excavation methods such as drilling (by hand or with heavy machinery) or blasting with explosives.
[edit] Muck excavation
This is the removal of excessively wet material and soil that is unsuitable for stockpiling.
[edit] Unclassified excavation
This is the removal of a combination of the above materials, such as where it is difficult to distinguish between the materials encountered.
For more information see: Types of soil.
[edit] Why is excavation carried out?
Excavation can also be classified according to the purpose of the work:
[edit] Cut and fill excavation
This is the process of excavation whereby the material that is cut or stripped is then re-used elsewhere on the site. The removed topsoil and earth can be used as fill for embankments, elevated sections, and so on. It can also be used to form a level surface on which to build, as elevated sections of the site are ‘cut’ and moved to ‘fill’ lower sections of the site.
[edit] Trench excavation
A trench is an excavation in which the length greatly exceeds the depth. Shallow trenches are usually considered to be less than 6 m deep, and deep trenches greater than 6 m.
Trench, or footing, excavation is typically used to form strip foundations, to bury services such as pipes, and so on. The choice of technique and plant for excavating, supporting and backfilling the trench depends on factors such as; the purpose of the trench, the ground conditions, the trench location, the number of obstructions, and so on.
The common techniques that are used include:
- Full depth, full length: Suitable for long narrow trenches of shallow depth, such as pipelines and sewers.
- Full depth, successive stages: Suitable for deep trenches where works can progress in sequence, reducing the risk of collapse.
- Stage depth, successive stages: Suitable for very deep trenches in confined areas, deep foundations and underpinning.
[edit] Basement excavation
A basement is part of a building that is either partially or completely below ground level. For more information, see Basement excavation.
[edit] Road excavation
This typically involves stripping topsoil and cut-and-fill to create the required levels. For more information, see Road construction.
[edit] Bridge excavation
This typically involves the removal of material for the footings and abutments of bridges. The work may be subdivided into wet, dry and rock excavation. Underwater excavations may require special methods of drill and blast. For more information, see Bridge construction.
[edit] Dredging
Dredging is the process of excavating and removing sediments and debris from below water level, typically from the bottom of lakes, rivers, harbours, and so on. For more information, see Dredging.
[edit] Over excavation
Over excavation is excavation that goes beyond the depth which is required for the formation of a below ground structure due to the presence of unsuitable material that must be removed. The excavation may then need to be back filled to create the required levels.
For more information see: Over excavation.
[edit] How are excavations supported?
Materials have different stability characteristics during excavation works. The ‘angle of repose’ of the material describes the steepest angle at which it will remain stable without support. The exact angle of repose will depend on the presence of groundwater, but some typical angles are:
- Drained clay: 45-degrees.
- Wet clay: 16-degrees.
- Gravel and dry sand: 40-degrees.
- Wet sand: 22-degrees.
Where there is a danger that an excavation will collapse, temporary support may be required. The type and extent of temporary support that is required will depend a range of factors, including:
- The stability and angle of repose of the subsoil.
- The proximity of the excavation to vehicles, services and buildings.
- The level of the water table.
- The subsoil types.
- The depth of the excavation.
- The length of time the excavation will be left open.
- The time of year and weather conditions.
The types of support that can be used include:
- Timber supports: Commonly used for low risk, narrow trenches, shafts or headings.
- Trench boxes: Can be placed in pre-excavated trenches in low-risk situations.
- Trench sheets: Can be overlapping or interlocking, and are used to provide continuous support for deeper trenches.
- Ground anchors and rock bolting.
- Caissons.
- Cofferdams.
[edit] Related articles on Designing Buildings
- Basement excavation.
- Building foundations.
- Dredging.
- Excavating plant.
- Ground improvement techniques.
- Groundworks.
- Mass haul movement.
- Over excavation.
- Ripping.
- Road construction.
- Spoil.
- Substructure.
- Surplus excavated material.
- Temporary works.
- Trench support.
- Trial pit.
- Tunnelling.
- Types of soil.
- Underground.
[edit] External references
- Engineers Daily - Types of excavation
- 'Introduction to Civil Engineering Construction' (3rd ed.), HOLMES, R., College of Estate Management (1994).
Featured articles and news
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA has launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.
Comments
[edit] To make a comment about this article, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.
A very well informed and well written article. Its amazing how you wrote detail about every type of excavation.